Full-range swept source optical coherence tomography based on carrier frequency by transmissive dispersive optical delay line.
نویسندگان
چکیده
A high speed swept source optical coherence tomography (SS-OCT) system capable of full-range imaging is presented. Wave-number carrier frequency is introduced into the spectral interference signal by a transmissive dispersive optical delay line (TDODL). High carrier frequency in the spectral interference signal corresponding to an equivalent distance-shift is exploited to obtain full-range OCT imaging. Theoretical development is conducted with the instantaneous coherence function introduced for a complete description of a spectral interference signal. Performance advantage of the TDODL-based method over the conventional approach where only one side (positive or negative path length difference) is used for imaging to avoid overlaying mirror artifacts is confirmed by the measured envelopes of spectral interference signal. Feasibility of the proposed method for full-range imaging is validated in a custom-built SS-OCT system by in vivo imaging of a biological sample.
منابع مشابه
Complete complex conjugate resolved heterodyne swept source optical coherence tomography using a dispersive optical delay line: erratum
We correct an error in our previous paper [Biomed. Opt. Express 2, 1218 (2011)] which led to an erroneous conclusion that a dispersive optical delay line (DODL) used in a swept source optical coherence tomography (SSOCT) system generated a pure phase modulation allowing for complex conjugate artifact removal in Fourier domain OCT via optical heterodyning. We now understand that an alternate phe...
متن کاملComplete complex conjugate resolved heterodyne swept-source optical coherence tomography using a dispersive optical delay line
Swept-source optical coherence tomography (SSOCT) provides a substantial sensitivity advantage over its time-domain counterpart, but suffers from a reduced imaging depth range due to sensitivity falloff and complex conjugate ambiguity. Heterodyne complex conjugate-resolved SSOCT (HCCR-SSOCT) has been previously demonstrated as a technique to completely resolve the complex conjugate ambiguity, e...
متن کاملDesign and performance of broadly tunable, narrow line-width, high repetition rate 1310nm VCSELs for swept source optical coherence tomography
MEMS tunable vertical cavity surface emitting laser (MEMS-VCSEL) development, over the past two decades, has primarily focused on communications and spectroscopic applications. Because of the narrow line-width, single-mode operation, monolithic fabrication, and high-speed capability of these devices, MEMS-VCSELs also present an attractive optical source for emerging swept source optical coheren...
متن کاملHigh-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm.
High-speed, high-resolution optical coherence tomography (OCT) imaging of the human retina is demonstrated using a frequency-swept laser at 850 nm. A compact external cavity semiconductor laser design, optimized for swept-source ophthalmic OCT, is described. The laser enables an effective 16 kHz sweep rate with >10 mm coherence length and a tuning range of approximately 35 nm full width at half...
متن کاملFull-range polarization-sensitive swept-source optical coherence tomography by simultaneous transversal and spectral modulation.
Polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) is used to measure three-dimensional phase-retardation images of birefringent biological tissue in vivo. PS-SS-OCT with continuous source polarization modulation is used to multiplex the incident states of polarization in the signal frequency of each A-scan. Although it offers the advantage of measurement speed that is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical optics
دوره 16 12 شماره
صفحات -
تاریخ انتشار 2011